Indian Statistical Institute, Bangalore

M. Math. First Year Second Semester - Topology II Duration: 3 hours

Mid-Semester Exam

Max Marks: 100

Date : February 22, 2016

Remark: There are five questions, each carrying 25 marks. Answer any four.

1. For $n \ge 0$, there is a covariant functor H_n from the category of topological spaces to the category of groups. For the *m*-sphere S^m and the m-ball B^m , we have

$$H_n(S^m) = \begin{cases} \mathbb{Z} & if \ n = 0 \ or \ m, \\ \{0\} & otherwise \end{cases}$$
$$H_n(B^m) = \begin{cases} \mathbb{Z} & if \ n = 0, \\ \{0\} & otherwise \end{cases}$$

- (a) Assuming these results, prove that for $m \ge 1, S^{m-1}$ is not a retract of B^m .
- (b) Assuming (a), prove that every continuous function from B^m to B^m has a fixed point.
- 2. (a) Let $\exp : \mathbb{R} \to S^1$ be defined by $\exp(t) = e^{2 \pi i t}$. What do we mean by the statement that \exp is "essentially" the quotient map from \mathbb{R} to \mathbb{R}/\mathbb{Z} ? Make it precise and prove it.
 - (b) If H is a closed normal subgroup of a topological group G, then show that the quotient map from G to G/H is a covering projection iff H is discrete.
- 3. Let $X = \{(x, \sin \frac{1}{x}) : 0 < x \leq \frac{1}{2\pi}\} \cup \{(0, y) : -1 \leq y \leq 1\} \subseteq \mathbb{R}^2$. Find the path components of X, with proof. Show that $\pi_1(X, x)$ is trivial for all $x \in X$. Show that X is not locally path connected.
- 4. For any path f in a topological space X, let [f] denote its homotype class with fixed end points. Consider the partially defined binary relation on the set of all path classes [f], where [f][g] = [f * g] if the end point of f equals the initial point of g. Here, * denotes concatenation. Assuming this operation is well defined, show that it is associative, when that makes sense.
- 5. Let $p: (X, \tilde{x}) \to (X, x)$ be a covering projection.
 - (a) Show that p is a local homeomorphism onto X, and its fibers are discrete.
 - (b) If (Y, y) is a connected space then show that any pointed continuous function $f: (Y, y) \to (X, x)$ has at most one lift $\tilde{f}: (Y, y) \to (\tilde{X}, \tilde{x})$.
 - (c) Show that the group morphism $p_* : \pi_1(\widetilde{X}, \widetilde{x}) \to \pi_1(X, x)$, induced by p, is injective. (In proving (c), you may assume the homotopy lifting theorem).